Modeling a ‘Classic’ Hardware Sequencer in
Csound: The Design and Use of the sequ Opcode

John ffitch! and Richard Boulanger?

! Alta Sounds
2 Berklee College of Music
jpff@codemist.co.uk rboulanger@berklee.edu

Abstract. Over the years, there have been many instruments, designed
and shared, that model the ‘classic’ analog step-sequencer. Some used
the table opcodes, some did it with Gens, some employed score macros
and score commands, and others simply copy-pasted lines in the note-
list. More recently, impressive sequencer instruments are being built with
arrays, and the schedule, schedkwhen, and event opcodes. These designs
have ranged from the simple to the sublime and reveal many wonderful
and inspiring approaches. All are worthy of study and imitation. Still,
beginners always ask, “How can you do sequencing in Csound?” This
question often leads into a deeper dive than they are ready for. Or they
ask, “Does Csound have a sequencer opcode?” Until recently, the answer
to that question was “no”, but now the answer is “yes!”. This paper
will introduce the sequ opcode, discuss how it was designed, show how
it works, and showcase some of the novel features, and the more esoteric
possibilities, associated with its unique design.

Keywords: Csound, sequencer, sequ

1 The Inspiration

While collaborating on a new generative work that featured algorithmic permu-
tations of short pitch and rhythm patterns using the existing opcodes it became
clear to the authors that there might be a more efficient way of coding some of
these desired behaviors.

; Starts with an 8 note riff (no pitch)

; — every 5 bars, two notes are randomly swapped

ib = 0.2 ; beat multiplier

gir[] fillarray 0,1,2,3,4,5,6,7,8

gil[] fillarray 0,ib,ib*1.5,ib*.5,ib*.5,ib*.5,ib*.5,ib*1.5,ib
schedule 1,1,0

giCount = 0O

instr 1
iTime = O



2 John ffitch and Richard Boulanger

iCount = 1
top:
if iCount>8 goto ending
schedule 10+gir[iCount], it, gill[gir[iCount]]
iTie += gil[gir[iCount]]
iCount += 1
goto top
ending:
giCount += 1

if (giCount%5==0) then
irl = rnd(7)
irl = int(ir1)+1
ir2 = rnd(7)
ir2 = int(ir2)+1
if (irl !'= ir2) then
itmp = gir[iri]
gir[irl] = gir[ir2]
gir[ir2] = itmp
endif
endif
schedule 1, it, O
endin

instr 11, 12, 13, 14, 15, 16, 17, 18
k1 linseg 0, 0.01, p3-0.11, 0.1, O
al oscil 0.8, 440+p1

out alxkl
endin

Discussions followed about the many ways to take the piece, and expand the
model above to support these new directions, when it occurred to the authors
that it might be useful, in this project, and in general, if an opcode that offered
these permutational possibilities was written. As we listened to the ‘riffs’ we were
generating, we were were instantly lead back to the modular electronic music if
the 70’s and 80’s produced with ‘classic’ hardware sequencers and arpeggiators.
We thought that if we added some of the variational and permutational possi-
bilities of our “riff-generator” to a traditional sequencer that we could introduce
both a familiar set of options, and some very new creative and sonic possibilities
to Csound. With that goal sequ was born.

2 How sequ Works

The sequ opcode is an array-based step-sequencer. One version of the opcode
supports one-dimensional arrays for rhythm, instrument, and data, and the other
supports a two-dimensional array for data specification.



The sequ Sequencer Opcode 3

kres sequ irhythm[], iinstr([], idata[], kbpm, klen
[, kmode] [, kstep] [, kreset] [, kverbose]

kres sequ irhythm[], iinstr([], idata[][], kbpm, klen
[, kmode] [, kstep] [, kreset] [, kverbose]

The opcode has k-rate support for sequence speed — kbpm, in beats per
minute, and length klen, and optional k-rate control of mode, step, and re-
set. Given the underlying hardware sequencer model, it is easy to see that the
developers were emulating the traditional voltage-control of rate, length, step,
and reset. In fact, many of the supported “modes” are found on classic analog
hardware sequencers as well.

— 0 - forward loop

n > 0 - forward loop with a mutation every n events

— -1 - backward loop

-2 - back and forth

— -3 - random events

-4 - play the entire sequence forward one time and stop
— -5 - play the entire sequence backward one time and stop
-6 - shuffle the events

— -7 - reset to the initial state

3 Under the Hood

The basic design follows the original Csound language version. An internal array
is initialised to the simple sequence [0, 1, 2, 3, ... len] and when it is time to start
a new cycle this array is used as an indirection to the argument arrays of notes.
When it is time to change the sequence, for example by swapping two notes,
the change is made in the internal sequence. The individual notes are sched-
uled via the API function csoundReadScore with arguments specified in the
2-dimensional array . Most of the complexity of the code has to do with keeping
track of where one is in the sequence for each mode, and their interactions.

// Mutate every mode events

if (mode > 0 && len>1 && p->cnt)mode == 0) {
int r1, r2;
do {
rl rand()%len;
r2 rand()%len;
} while (ri==r2);

int tm = p->seqlril;
p—>seqlrl] = p->seqlr2];
p—>seql[r2] = tm;



4 John ffitch and Richard Boulanger

if (*p->verbos)
printf ("swap %d and %d\n", rl, r2);

4 Some Unique Features

Imagine setting up the opcode with a traditional 8-step sequence of rhythms
and pitches, and on step 3 triggering a generative meta-instrument producing
ebbing random clouds of minced audio and on step 7 triggering low random
kicks and thuds from another instrument. Or, how about one master sequ instr
“seqControl”, launching sequ instr “Seql” on step 1, and sequ instr “seq2” on
step 2, instr “seq3” on step 3, and instr “seq4” on step 4; all with the same
pitches and rhythms; all starting at the same BPM; but each, slowly moving
away in timbre, space, and time. Or one could imagine using the kstep argument
and assigning a specific MIDI note or ASCII key to jump to a step, maybe after
step 8, that momentarily triggers a generative instrument that takes the piece off
into a very different direction. As such, it could serve as an important structuring
device in a live or generative composition. Clearly, the #instr argument offers a
rich set of permutational and control possibilities.

The instrument below shows using an ASCII trigger to reset the sequence
manually:

instr 1
gkNumber, gkPress sensekey

if changed(gkPress) == 1 then
; ascii 114 = lowercase letter ’r’ - for reset
if (gkNumber == 114) then
kreset = 1
else
kreset = 0
endif
endif

irhythms[] fillarray 1, 1.5,0.5, 0.5, 0.5, 0.5, 1.5, 1

iinst[] fillarray 11,12,13,14,15,16,17,18

inotes[] fillarray 60, 61, 62, 63, 64, 65, 66, 67

kstep init O

kres sequ irhythms,iinst,inotes,180,8,0,0,kreset,1
endin

instr 11, 12, 13, 14, 15, 16,17, 18
k1l 1linseg 0, 0.01, p3-0.11, 0.1, O
al oscil 0.9, cpsmidinn(p4)



The sequ Sequencer Opcode 5

outall alxkl
endin

This instrument features two sequences going out of phase with each other
in the left and right channels.

instr 1
irhythm[] fillarray 1, 1.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1
instO[] fillarray 11, 12, 13, 14, 15, 16, 17, 18
inst1[] fillarray 19, 20, 21, 22, 23, 24, 25, 26
inotes[] fillarray 60, 61, 62, 63, 64, 65, 66, 67
kspeed line 60, p3, 180
kSeq0 sequ irhythm, instO, inotes, kspeed, 8
kSeql sequ irhythm, instl, inotes, kspeed * 1.2, 8
endin

instr 11, 12, 13, 14, 15, 16, 17, 18
kl linseg 0, p3*0.01, 1, p3*.99, O
al oscil 0.9, cpsmidinn(p4)
outsl alx*xkl

endin

instr 19, 20, 21, 22, 23, 24, 25, 26
k1l linseg 0, p3*0.01, 1,p3%*.99, O
al oscil 0.9, cpsmidinn(p4)
outs2 alxkl

endin

Another powerful feature of the sequ opcode is the two-dimensional data
array allowing for the sending of multiple control parameters, synchronized p-
fields, to an instrument from a single sequ opcode:

instr 1
;3 rhythm array - values are multiplied by tempo (ticks) in BPM

irhythmO[] fillarray 1, 1.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1
;3 instrument array - instrument number to render for each step
iinstsO[] fillarray 11, 12, 13, 14, 15, 16, 17, 18

;; note array - cpsmidinn(p4) amp(p5) modRatio(p6) modIndex(p7)
;; — esentially ’p4’, ’p5’, ’p6’ and ’p7’ are output from sequ
;3 initialize 4 rows with 8 columns

inotes[][] init 4,8

inotes fillarray 60, 61, 62, 63, 64, 65, 66, 67, \
0.9, 0.3, 0.8, 0.2, 0.7, 0.4, 0.5, 0.6, \

1, 2, 3, 4, 5, 6, 7, 8, \



6 John ffitch and Richard Boulanger
1, 11, 2, 12, 3, 21, 4, 22

;3 variable tempo
kspeed linseg 85, p3*.7, 85, p3*.3, 240

kSeq sequ irhythmO, iinstsO, inotes, kspeed, 8, p4, O
endin

instr 11, 12, 13, 14, 15, 16, 17, 18
kenv linseg 0, p3%0.01, 1, p3*.99, O
asig foscil p5, cpsmidinn(p4), 1, p6, p7
outall asig * kenv

endin

Further, it is important to note that although the arrays are i-rate variables,
their elements can be updated and changed on-the-fly!

Given the limits of space in this paper, the bibliography will feature links to
an additional set of models and excerpts from pieces exploring the new possibil-
ities of this powerful and versatile opcode. 3

5 Conclusion

The new sequ opcode brings a standard module from the ‘classic’ synthesizer to
Csound, and adds some powerful possibilities given its array-based design, the
specific k-rate controls, and the supported playback and permutational modes.
The authors welcome input and suggestions for improvements to the opcode and
for other ‘optional’ arguments that could, and maybe should, be added to make
sequ even more versatile.

3 Some of these will be demonstrated live in the paper presentation at ICSC22.



	Modeling a `Classic' Hardware Sequencer in Csound: The Design and Use of the sequ Opcode
	The Inspiration
	How sequ Works
	Under the Hood
	Some Unique Features
	Conclusion


